Final Exam - Advanced Algebraic Structures (WBMA16000)
 Wednesday January 29, 2019, 15:00h-18.00h
 University of Groningen

Instructions

1. Write your name and student number on every page you hand in.
2. All answers need to be accompanied with an explanation or a calculation.
3. You may use results obtained in homework or tutorial problems.
4. In total you can obtain at most 90 points on this exam. Your final grade is $(P+10) / 10$, where $P \leq 90$ is the number of points you obtain on the exam.

Problem 1 (5+5 points) (Module Homomorphisms)

(a) Show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$ is trivial.
(b) Let R be a commutative ring and let $n \geq 1$ be an integer. Show that $\operatorname{Hom}_{R}\left(R^{n}, R\right) \cong R^{n}$.

Problem 2 ($5+4+6+5$ points) (Tensor products)

(a) Find a nontrivial \mathbb{Z}-module M such that $M \otimes_{\mathbb{Z}} M \cong M$ and $M \nsubseteq \mathbb{Z}$.
(b) Let R be a commutative ring, let I be an ideal of R and let M be an R-module. Then

$$
I M=\left\{\sum_{i=1}^{n} a_{i} m_{i}: n \geq 0, a_{i} \in I, m_{i} \in M \text { for all } i\right\}
$$

is a submodule of M (you do not need to prove this). Show that there is a unique R -module-homomorphism

$$
f:(R / I) \otimes_{R} M \rightarrow M / I M
$$

such that $f((r+I) \otimes m)=(r m)+I M$ for all $r+I \in R / I$ and $m \in M$.
(c) Show that f in (b) is an isomorphism. (Hint: Find the inverse function.)
(d) Find an example of a commutative ring R, an ideal I of R and an R-module M such that $I \otimes_{R} M \neq I M$.

Problem 3 ($5+4+6$ points) (Projective modules)

(a) Let $n>1$ be an integer. Show that the \mathbb{Z}-module $\mathbb{Z} / n \mathbb{Z}$ is not projective.
(b) Deduce that a finitely generated \mathbb{Z}-module is projective if and only if it's free.
(c) Let p be a prime, let $n \geq 1$ be an integer and let R be the ring $\mathbb{Z} / p^{n} \mathbb{Z}$. Show that the following property holds for R if and only if $n=1$: Every submodule of a projective R-module is itself projective.

Problem 4 ($3+6+6+6$ points) (Cyclotomic and cyclic extensions)

For a positive integer n, let $\Phi_{n}(x) \in \mathbb{Q}[x]$ be the n-th cyclotomic polynomial over \mathbb{Q} and let $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$.
(a) Write down $\Phi_{n}(x) \in \mathbb{Q}[x]$ for $n=7$ and $n=17$.
(b) For each $n \in\{7,17\}$ prove that
(i) there exists $a_{n} \in \mathbb{Q}$ and $b_{n} \in \mathbb{Q}\left(\zeta_{n}\right) \backslash \mathbb{Q}$ such that $b_{n}^{2}=a_{n}$;
(ii) if $a_{n}^{\prime} \in \mathbb{Q}, b_{n}^{\prime} \in \mathbb{Q}\left(\zeta_{n}\right) \backslash \mathbb{Q}$ satisfy $b_{n}^{\prime 2}=a_{n}^{\prime}$, then $a_{n}^{\prime}=\lambda^{2} a_{n}$ for some $\lambda \in \mathbb{Q}$.
(c) Prove that there exists $f(x) \in \mathbb{Q}[x]$ such that $f(\cos (2 \pi / 17))=b_{17}$, but there exists no $g(x) \in \mathbb{Q}[x]$ such that $g(\cos (2 \pi / 7))=b_{7}$.
(d) Give an example of a cyclic extension of $\mathbb{Q}\left(\zeta_{7}\right)$ of degree 7 and an example of a cyclic extension of $\mathbb{Q}\left(\zeta_{17}\right)$ of degree 17 .

Problem 5 ($6+6+6+6$ points) (Galois group of the splitting field of a cubic)

Let K be a field of characteristic different from 2 and 3 and consider a separable polynomial

$$
f(x)=x^{3}+a x^{2}+b x+c \in K[x] .
$$

Let L be the splitting field of f over K and let $G=\operatorname{Gal}(L / K)$.
(a) Show that G is isomorphic to a subgroup of S_{3}.
(b) Assume now that $f(x)$ is irreducible in $K[x]$; deduce that $G \cong A_{3}$ or $G \cong S_{3}$. Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in L$ be the roots of $f(x)$. Define

$$
\Delta=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2}
$$

(i) Prove that $\Delta \in K$.
(ii) Prove that Δ is a square in K if and only if $G \cong A_{3}$.
(c) Let $K=\mathbb{F}_{5}$. Show that for every irreducible $f(x) \in K[x]$ as above, Δ is a square.
(d) Let K be the splitting field of $x^{3}-5 \in \mathbb{Q}[x]$ and let L be the splitting field of $f(x)=$ $x^{3}-7 \in K[x]$ over K. Prove that $G \cong A_{3}$.

End of test (90 points)

